Detalhes bibliográficos
Ano de defesa: |
2006 |
Autor(a) principal: |
Tocha, Neusa Nogas |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-14012007-194635/
|
Resumo: |
Neste trabalho temos por objetivo apresentar alguns resultados relacionados aos temas abordados por Aron, Choi e Llavona (1995), Aron e Dimant (2002) e Aron e Rueda (1997). Primeiramente, vamos estudar as propriedades polinomiais (P) e (RP) para os espaços de Banach e a propriedade ACL para as funções definidas entre as bolas unitárias fechadas do espaço. Vamos apresentar novos exemplos de espaços de Banach que possuem a propriedade (P) onde é possível exibir funções que satisfazem a propriedade ACL. Vamos ainda estudar o conjunto de continuidade seqüencial fraca de um polinômio N-homogêneo contínuo com valores vetoriais. Apresentamos as suas propriedades básicas e algumas conexões com o caso dos polinômios escalares. No espaço dual faremos uma breve análise dos polinômios com certo tipo de continuidade com relação à topologia fraca-estrela. Numa outra direção, estudamos os zeros de polinômios N-homogêneos em várias variáveis complexas, mais especificamente, dados n, N números naturais existe um número natural m tal que para cada polinômio N-homogêneo complexo P definido no espaço vetorial C^ existe um subespaço vetorial X_ contido no conjunto dos zeros do polinômio P de dimensão n. Aqui, o principal objetivo é melhorar as limitações para m encontradas por Aron e Rueda (1997) como também generalizar os seus resultados. |