Filtro estendido de Kalman aplicado à tomografia por impedância elétrica.

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Trigo, Flavio Celso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3132/tde-23112001-151232/
Resumo: A Tomografia por Impedância Elétrica (EIT) é um método que utiliza estimativas da distribuição de condutividade ou impedância de tecidos orgânicos na obtenção de imagens médicas. O procedimento de obtenção das imagens baseia-se em medições de correntes ou voltagens no contorno da região sob análise e na estimação de parâmetros de um modelo desta região. No caso de pacientes submetidos à respiração artificial, o conhecimento da distribuição absoluta ou das variações de condutividades nos pulmões auxilia na detecção de fenômenos como colapso alveolar ou pneumotórax e permite o ajuste e controle da vazão e pressão do ar fornecido, de modo a evitar a ocorrência de tais anomalias. Este trabalho apresenta algoritmos cujo objetivo é a solução do problema inverso e mal posto de estimar a distribuição absoluta e as variações de condutividades nos pulmões através da EIT para a geração de imagens em duas dimensões. O algoritmo para a estimação da distribuição absoluta de condutividade utiliza o filtro estendido de Kalman. As simulações numéricas mostram que, com medidas incorporando ruído cujo desvio padrão atinge até 12% da máxima voltagem, as estimativas de condutividades convergem para a distribuição esperada com um desvio inferior a 7% do valor da máxima condutividade. Quanto à detecção de variações de condutividades em relação a uma distribuição de condutividades tomada como referência, as simulações numéricas sugerem que a solução do problema depende da utilização de métodos de regularização.