Aplicação de redes neurais artificiais e filtro de Kalman para redução de ruídos em sinais de voz

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Selmini, Antonio Marcos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-29072016-111821/
Resumo: A filtragem, na sua forma mais geral, tem estado presente na vida do homem há muito tempo. Com o surgimento de novas tecnologias (surgimento da eletricidade e a sua evolução) e o desenvolvimento da computação, as técnicas de filtragem (separação) de sinais elétricos. Normalmente, os sistemas de comunicação (telefonia móvel e fixa, sinais recebidos de satélites e outros sistemas) contém sinais indesejáveis responsáveis pela degradação do sinal original. Dentro desse contexto, este projeto de pesquisa apresenta um estudo do algoritmo Filtro Duplo de Kalman Estendido, onde um filtro e Kalman e duas redes neurais são empregadas para a redução de ruídos em sinais de voz. O algoritmo estudado foi aplicado ao processamento de um sinal corrompido por dois tipos de ruídos diferentes: ruído branco e ruído gaussiano e ruído branco não estacionário, conseguindo-se bons resultados. Uma melhora sensível do sinal filtrado pode ser conseguida com técnicas de pré-filtragem do sinal. Neste trabalho foi utilizado o filtro de médias para a pré-filtragem, obtendo um sinal filtrado com ruído musical de baixa intensidade.