Resolubilidade e irresolubilidade de espaços topológicos

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Boero, Ana Carolina
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-08052007-081304/
Resumo: O principal objetivo deste trabalho é apresentar um estudo sistemático da teoria dos espaços topológicos resolúveis e irresolúveis. Enfocaremos diversas propriedades inerentes aos mesmos, incluindo uma exposição meticulosa de técnicas utilizadas na construção de espaços topológicos irresolúveis e sem pontos isolados. Dado um cardinal \\kappa > 1, exibiremos exemplos de espaços topológicos que são \\kappa-resolúveis, mas que não são \\kappa^{+}-resolúveis. Mostraremos, ainda, que se um espaço topológico for n-resolúvel, para todo número natural n, o mesmo será \\omega-resolúvel. Provaremos, contudo, que se \\lambda é um cardinal tal que \\omega < cf(\\lambda) = \\lambda, existe um espaço topológico que é \\mu-resolúvel, para todo cardinal \\mu < \\lambda, mas que não é \\lambda-resolúvel. O cerne desta dissertação refere-se à construção, em ZFC, de um subespaço enumerável, denso e submaximal de 2^c.