Fatoração de matrizes no problema de coagrupamento com sobreposição de colunas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Brunialti, Lucas Fernandes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-31102016-123504/
Resumo: Coagrupamento é uma estratégia para análise de dados capaz de encontrar grupos de dados, então denominados cogrupos, que são formados considerando subconjuntos diferentes das características descritivas dos dados. Contextos de aplicação caracterizados por apresentar subjetividade, como mineração de texto, são candidatos a serem submetidos à estratégia de coagrupamento; a flexibilidade em associar textos de acordo com características parciais representa um tratamento adequado a tal subjetividade. Um método para implementação de coagrupamento capaz de lidar com esse tipo de dados é a fatoração de matrizes. Nesta dissertação de mestrado são propostas duas estratégias para coagrupamento baseadas em fatoração de matrizes não-negativas, capazes de encontrar cogrupos organizados com sobreposição de colunas em uma matriz de valores reais positivos. As estratégias são apresentadas em termos de suas definições formais e seus algoritmos para implementação. Resultados experimentais quantitativos e qualitativos são fornecidos a partir de problemas baseados em conjuntos de dados sintéticos e em conjuntos de dados reais, sendo esses últimos contextualizados na área de mineração de texto. Os resultados são analisados em termos de quantização do espaço e capacidade de reconstrução, capacidade de agrupamento utilizando as métricas índice de Rand e informação mútua normalizada e geração de informação (interpretabilidade dos modelos). Os resultados confirmam a hipótese de que as estratégias propostas são capazes de descobrir cogrupos com sobreposição de forma natural, e que tal organização de cogrupos fornece informação detalhada, e portanto de valor diferenciado, para as áreas de análise de agrupamento e mineração de texto