Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Ramos Diaz, Alexandra Katiuska |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-12112018-182428/
|
Resumo: |
Biagrupamento e coagrupamento são tarefas de mineração de dados que permitem a extração de informação relevante sobre dados e têm sido aplicadas com sucesso em uma ampla variedade de domínios, incluindo aqueles que envolvem dados textuais -- foco de interesse desta pesquisa. Nas tarefas de biagrupamento e coagrupamento, os critérios de similaridade são aplicados simultaneamente às linhas e às colunas das matrizes de dados, agrupando simultaneamente os objetos e os atributos e possibilitando a criação de bigrupos/cogrupos. Contudo suas definições variam segundo suas naturezas e objetivos, sendo que a tarefa de coagrupamento pode ser vista como uma generalização da tarefa de biagrupamento. Estas tarefas, quando aplicadas nos dados textuais, demandam uma representação em um modelo de espaço vetorial que, comumente, leva à geração de espaços caracterizados pela alta dimensionalidade e esparsidade, afetando o desempenho de muitos dos algoritmos. Este trabalho apresenta uma análise do comportamento do algoritmo para biagrupamento Cheng e Church e do algoritmo para coagrupamento de decomposição de valores em blocos não negativos (\\textit{Non-Negative Block Value Decomposition} - NBVD), aplicado ao contexto de dados textuais. Resultados experimentais quantitativos e qualitativos são apresentados a partir das experimentações destes algoritmos em conjuntos de dados sintéticos criados com diferentes níveis de esparsidade e em um conjunto de dados real. Os resultados são avaliados em termos de medidas próprias de biagrupamento, medidas internas de agrupamento a partir das projeções nas linhas dos bigrupos/cogrupos e em termos de geração de informação. As análises dos resultados esclarecem questões referentes às dificuldades encontradas por estes algoritmos nos ambiente de experimentação, assim como se são capazes de fornecer informações diferenciadas e úteis na área de mineração de texto. De forma geral, as análises realizadas mostraram que o algoritmo NBVD é mais adequado para trabalhar com conjuntos de dados em altas dimensões e com alta esparsidade. O algoritmo de Cheng e Church, embora tenha obtidos resultados bons de acordo com os objetivos do algoritmo, no contexto de dados textuais, propiciou resultados com baixa relevância |