Detalhes bibliográficos
Ano de defesa: |
1993 |
Autor(a) principal: |
Moala, Fernando Antonio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23082018-141325/
|
Resumo: |
Pela ausência de uma definição precisa do conceito de \"Não-Informação , há na literatura Bayesiana várias formas de formular densidades a priori não-informativas, por exemplo, Jeffreys (1967), Zellner (1984, 1990), Tibshirani (1989) e Bernardo (1979). Um estudo para verificar se estas densidades a priori são equivalentes, isto é, produzem densidades a posteriori iguais, é de grande interesse prático. O objetivo de nosso trabalho é selecionar um modelo que melhor represente um estado de \"pouco conhecimento\", a priori, sobre o parâmetro. Este estudo comparativo é feito para o caso específico do modelo de Weibull, com a finalidade de obter informação a respeito da função de confiabilidade R. Uma exposição de cada densidade a priori bem corno de suas propriedades também é apresentada. Para inicio das discussões, apresentamos, no Capitulo 1, os conceitos básicos da Inferência Bayesiana, questões filosóficas, vantagens e desvantagens de sua utilização em uma análise estatística. No Capítulo 2, revisamos algumas propriedades do modelo de Weibull. O Capítulo 3 é dedicado ao estudo das densidades a priori não-informativas onde discutimos sua definição, vantagens e desvantagens de sua utilização e descrevemos os métodos propostos por Jeffreys, Zellner, Tibshirani e Bernardo. No capítulo 4, calculamos as respectivas densidades a posteriori para a função de confiabilidade. Utilizando a Aproximação de Laplace (Kass, Tierney e Kadane, 1990) obtivemos uma forma fechada para essas densidades a posteriori; mais do que isso, encontramos que as densidades a posteriori seguem urna distribuição conhecida, denominada Log- Gama Negativa. Os resultados obtidos via Laplace são comparados graficamente aos resultados de Sinha e Guttman (1988), obtidos via integração numérica. Além disso, um outro resultado importante obtido é que as densidades a posteriori correspondentes às densidades a priori de Zellner, Tibshirani e Bernardo, respectivamente, são iguais. A igualdade das densidades a posteriori correspondentes as duas últimas densidades a priori é devida à coincidência dessas densidades a priori. Finalmente, no Capítulo 5, apresentamos urna ilustração numérica, através de gráficos e intervalos, para o estudo comparativo entre as densidades a posteriori correspondentes às densidades a priori de Jeffreys e Zellner e uma conclusão do estudo. Verificamos, também, que o critério de probabilidade de cobertura dos intervalos a posteriori, proposto por Berger (1992), não é suficiente para determinarmos qual densidade a priori seria menos informativa para valores de R próximos de 0 e 1; para isto sugerimos um critério adicional, através da comparação das amplitudes dos intervalos a posteriori. |