RPCs design, development and tests for the Pierre Auger Observatory

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Martins, Victor Barbosa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-26092018-083023/
Resumo: The cosmic rays are the most energetic particles in the universe. Their production, propagation, and detection are objects of studies. Surface detectors aim to identify particles from extensive air showers (EAS) which the result from the cosmic-ray interactions with the atmosphere. Resistive Plate Chambers (RPCs) have shown to be a suitable muon detector to be integrated into the Pierre Auger Observatory. An instrumentation was developed to assembly RPCs in São Carlos (BRA). Data from RPCs already built by our collaborators in Coimbra (POR) were analyzed. The detector efficiency to muons was calculated and is approximately 88%, which is in good agreement with the values quoted in the literature. Direction maps were built to investigate the muon incoming direction and the quantity of matter traversed by the muons. The dependence of the muon flux on the zenith angle was calculated and compared with results from the simulation. A square cosine dependence is expected, though it is seen that the building structure has enough matter to block some of the incident muons and alter the dependence curve. The total muon flux was estimated based on the detector efficiencies and solid angle as 1.6.10−5. mm−2.sr−1. s−1 compared with the literature value of 7.1.10−5 mm−2.sr−1.s−1, which gives an absorption by the building of approximately 77%.