Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Oliveira, Jaime Souza de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Niterói
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://app.uff.br/riuff/handle/1/2938
|
Resumo: |
O início deste estudo de doutorado, em 2012, coincidiu com a celebração do primeiro centenário da descoberta da radiação cósmica. Embora nosso conhecimento sobre estas partículas tenha aumentando consideravelmente ao longo do último século, ainda há muitas questões que necessitam ser elucidadas, principalmente para aquelas com energias acima de 1018 eV, denominadas raios cósmicos de energia ultra alta. A razão para isso é que o fluxo destas partículas é extremamente pequeno, indo de uma partícula por km2 por ano, na faixa de energia de 1018 eV, a uma partícula por km2 por século, em energias ainda mais elevadas. Para compensar este baixo fluxo de partículas, foram construídos observatórios enormes nas últimas décadas, sendo o maior deles, o Observatório Pierre Auger, foco dos estudos realizados nesta tese. Embora o Observatório Auger, em operação desde 2004, venha realizando descobertas significativas com respeito aos raios cósmicos ultra-energéticos, ainda não se sabe, de maneira indubitável, quais são suas fontes, composição química, mecanismos de aceleração e propagação. Em especial, o estudo de anisotropias nas direções de chegada dos raios cósmicos à Terra é de fundamental importância para o entendimento destas questões. Assim, a principal contribuição desta tese trata de um estudo em multirresolução de anisotropias no fluxo dos raios cósmicos detectados no Observatório Auger, com energias acima de 4×1018 eV. Para isso, medidas do espectro de potência angular foram realizadas sob nossa responsabilidade, enquanto que uma análise complementar, utilizando needlets, foi empregada por um grupo de físicos da Universidade de Aachen, Alemanha. Ainda no contexto de anisotropia, destacamos um outro estudo realizado nesta tese, no qual mostramos não haver inconsistência entre resultados obtidos em duas análises distintas, uma usando somente dados da Colaboração Auger e outra usando também dados da Colaboração Telescope Array. Adicionalmente, também descrevemos um estudo relacionado ao aprimoramento dos detectores de superfície do Observatório Pierre Auger, no qual mostramos que os tanques de radiação Cherenkov podem ser calibrados e terem sua performance avaliada com a colocação de um detector de múons sob eles. |