Extractive document summarization using complex networks

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Tohalino, Jorge Andoni Valverde
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102018-155954/
Resumo: Due to a large amount of textual information available on the Internet, the task of automatic document summarization has gained significant importance. Document summarization became important because its focus is the development of techniques aimed at finding relevant and concise content in large volumes of information without changing its original meaning. The purpose of this Masters work is to use network theory concepts for extractive document summarization for both Single Document Summarization (SDS) and Multi-Document Summarization (MDS). In this work, the documents are modeled as networks, where sentences are represented as nodes with the aim of extracting the most relevant sentences through the use of ranking algorithms. The edges between nodes are established in different ways. The first approach for edge calculation is based on the number of common nouns between two sentences (network nodes). Another approach to creating an edge is through the similarity between two sentences. In order to calculate the similarity of such sentences, we used the vector space model based on Tf-Idf weighting and word embeddings for the vector representation of the sentences. Also, we make a distinction between edges linking sentences from different documents (inter-layer) and those connecting sentences from the same document (intra-layer) by using multilayer network models for the Multi-Document Summarization task. In this approach, each network layer represents a document of the document set that will be summarized. In addition to the measurements typically used in complex networks such as node degree, clustering coefficient, shortest paths, etc., the network characterization also is guided by dynamical measurements of complex networks, including symmetry, accessibility and absorption time. The generated summaries were evaluated by using different corpus for both Portuguese and English language. The ROUGE-1 metric was used for the validation of generated summaries. The results suggest that simpler models like Noun and Tf-Idf based networks achieved a better performance in comparison to those models based on word embeddings. Also, excellent results were achieved by using the multilayered representation of documents for MDS. Finally, we concluded that several measurements could be used to improve the characterization of networks for the summarization task.