Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Silva, Vanessa Cristina Pereira da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3140/tde-11042018-091600/
|
Resumo: |
Em decorrência da necessidade de se obter circuitos integrados (CIs) cada vez mais velozes e consequentemente dando sequência à lei de Moore, a redução das dimensões dos dispositivos se torna necessária, aumentando assim a capacidade de integração de transistores dentro de um CI, porém, ao passo que ocorre a miniaturização, aparecem efeitos parasitários que afetam o comportamento dos transistores. Sendo assim, torna-se necessária a utilização de novos dispositivos e o uso de diferentes materiais, para dar continuidade à evolução tecnológica. Com o avanço da tecnologia, as indústrias seguiram em dois caminhos diferentes, a tecnologia planar (exemplo: UTBB) e a tridimensional (exemplo: FinFET). Neste trabalho são abordadas estas duas diferentes geometrias. Foram analisados dispositivos UTBOX e UTBB (planares) e os nanofios de porta ômega (?-Gate NW), que tem estrutura tridimensional. O uso de dispositivos com baixa-potência e baixa-tensão tornaram-se ainda mais importante nos dias de hoje, com aplicações em áreas médicas, como aparelhos auditivos e marca passos, em relógios inteligentes, microsensores e etc. Quanto menor for a potência consumida, menor será o calor gerado, resultando em uma redução de custos com sistemas de refrigeração. Os circuitos que operam na região de sublimiar são utilizados em aplicações onde o consumo de energia é mais importante do que a performance, porém, ao trabalhar nessa região os transistores apresentam um alto ganho para pouca variação de tensão. Nos transistores UTBOX e UTBB SOI nMOSFETs foram analisados os parâmetros partindo-se da tensão de limiar em direção à região do transistor no estado desligado, analisando a influência da espessura da região ativa do silício, do comprimento do canal e da implantação do plano de terra nos seguintes parâmetros: tensão de limiar, inclinação de sublimiar, abaixamento da barreira induzido pelo dreno (DIBL), a fuga no dreno induzida pela porta (GIDL) e razão das correntes no estado ligado e desligado (ION/IOFF). A redução do comprimento de canal afeta todos os parâmetros, devido ao efeito de canal curto, que além de reduzir a tensão de limiar, quando o dispositivo opera com baixo VDS (tensão entre dreno (VD) e fonte (VS)), reduz ainda mais quando aplicado alto VDS (em saturação), aumentando o DIBL. Esse efeito foi observado para os dispositivos nanofios com porta ômega, nos três valores de largura de canal analisados. Com o VDS alto também ocorre mais fuga de corrente pela segunda interface para comprimentos de canal curto, o que reduz a razão ION/IOFF. Quanto mais fina é a espessura do canal, melhor é o acoplamento entre as interfaces, resultando em uma melhor inclinação de sublimiar (SS) tornando os valores próximos ao limite teórico de 60mV/dec à temperatura ambiente. Nos resultados experimentais foi possível observar, para os dispositivos UTBOX e UTBB, uma redução de SS de aproximadamente 20 mV/dec, com a redução de tsi. A espessura da região ativa do silício também influencia na distribuição do campo elétrico, sendo diretamente proporcional, ou seja, quanto mais espessa a camada de silício, maior será o campo elétrico. A implantação do plano de terra (GP) tem como um de seus objetivos reduzir as cargas de depleção que são formadas abaixo do óxido enterrado e assim melhorar o controle das cargas no canal pela tensão aplicada no substrato. Essas cargas de depleção aumentam a espessura efetiva do óxido enterrado e também influenciam as cargas dentro do canal, resultando em um maior potencial na segunda interface (canal/óxido enterrado), facilitando a condução no canal, ou seja, reduzindo o valor de VT. Com a presença do GP, o potencial na segunda interface é mais próximo de zero, o que reduz a condução por essa região. Com isso será necessária uma maior tensão para inverter o canal. Porém, o controle das cargas pela tensão aplicada na porta é maior. Os valores extraídos de VT sem GP foram de aproximadamente 0,25V e com GP aproximadamente 0,45V. O estudo feito nos transistores de estrutura de nanofio e porta ômega NMOS e PMOS foi baseado em três parâmetros: tensão de limiar, inclinação de sublimiar e DIBL, com diferentes comprimentos e larguras de canal, sendo possível observar a presença do efeito de canal curto ao analisar os três parâmetros para L a partir de 100nm. Os transistores com Wfin=220nm apresentaram um menor VT em relação aos demais, para explorar esse fato, foram feitas simulações numéricas dos transistores do tipo N com Wfin=220nm e L=100nm. Com as simulações iniciais, os transistores com Wfin=220nm apresentaram um valor da tensão de limiar bem próximo dos demais Wfin. Para explorar o porquê de os dispositivos experimentais apresentarem um deslocamento no VT, foi analisada a condução pela segunda interface, onde, com as simulações com cargas fixas na segunda interface, a curva IDSXVGS simulada ficou próxima da experimental, explicando a redução de VT para Wfin=220nm. Com as simulações com cargas fixas na primeira e segunda interfaces, foi possível notar uma imunidade na inclinação de sublimiar ao adicionar essas cargas, que ocorre devido à pequena altura da região ativa de silício (hfin=10nm) que promove um forte acoplamento entre as interfaces. A largura de canal afetou significativamente os valores de DIBL para Ls menores que 100nm, pois, como o campo elétrico é proporcional à área, os transistores com L pequeno e W grande sofrem forte influência desse campo, resultando em um aumento de VT quando em saturação. |