Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Uribe, Paloma Vaissman |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-113120/
|
Resumo: |
No presente trabalho são apresentados diversos métodos de seleção de variáveis e encolhimento para modelos lineares dinâmicos Gaussianos sob a perspectiva Bayesiana. Em particular, propomos um novo método o qual induz esparcidade dinâmica em modelos de regressão linear com coeficientes variantes no tempo. Isso é feito através da especificação de prioris spike-and-slab para as variâncias dos coeficientes de variação do tempo, estendendo o trabalho anterior de Ishwaran and Rao (2005) A abordagem é semelhante ao processo definido em Kalli and Griffin (2014), no entanto, assumimos uma estrutura Markov switching para as variâncias ao invés de um processo Gama auto regressivo. Além disso, investigamos diferentes priores, incluindo uma mistura de distribuições Gama Inversa, bastante utilizada para variâncias, além de outras misturas de distribuições, como a Gama, que gera a priori conhecida como Normal-Gama para os coeficientes (Griffin et al. (2010)). Nesse sentido, o modelo proposto pode ser visto como uma seleção de variável dinâmica em que os coeficientes podem assumir valores diferentes de zero seguindo uma distribuição mais dispersa (através do slab) ou encolhimento em direção a zero (através do spike) em cada ponto do tempo. O esquema MCMC usa.do para. simular a. posteriori utiliza variáveis latentes Markovianas que podem assumir regimes binários em cada. ponto de tempo para gerar as variâncias dos coeficientes. Dessa forma, o modelo é|um modelo de mistura dinâmica, portanto, para gerar as variáveis latentes, utilizamos o algoritmo de Gerla.ch et al. (2000), que permite gerar essas variáveis sem condicionamento nos estados (coeficientes variantes no tempo). A abordagem é exemplificada através de exemplos simulados e urna aplicação de dados reais |