O problema de Stefan unidimensional

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Espirito Santo, Arthur Miranda do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-20052013-221152/
Resumo: O seguinte trabalho procura estudar problemas de fronteira móvel, conhecidos por problemas de Stefan, bem como aproximar suas soluções. Aplicações de problemas de Stefan encontram-se, por exemplo, na física termal de mudança de estados, presente em diversos fenômenos físicos e químicos naturais e na indústria. Devido a não-linearidade, a maior parte destes problemas não possuem solução analítica conhecida e uma técnica comum para se aproximar soluções é o método de balanceamento integral, inicialmente estudado por Goodman (1958). Este método e suas variações propõem perfis de aproximação no domínio da solução e resolvem uma versão integral da equação diferencial. O problema se resume a resolver uma equação diferencial ordinária no tempo envolvendo a profundidade de penetração do calor e o perfil de aproximação proposto. O trabalho estuda tais métodos para problemas termais clássicos em primeiro lugar, de modo que a extensão para problemas de Stefan seja natural. Refinamentos são apresentados, bem como uma técnica de subdivisão do espaço que resulta num esquema numérico. A técnica de imobilização e fronteira é desenvolvida e aplicada em diversos momentos, a fim de simplificar a utilização dos métodos integrais.