O problema de Monge-Kantorovich para duas medidas de probabilidade sobre um conjunto finito

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Souza, Estefano Alves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-04052009-162654/
Resumo: Apresentamos o problema do transporte ótimo de Monge-Kantorovich com duas medidas de probabilidade conhecidas e que possuem suporte em um conjunto de cardinalidade finita. O objetivo é determinar condições que permitam construir um acoplamento destas medidas que minimiza o valor esperado de uma função de custo conhecida e que assume valor nulo apenas nos elementos da diagonal. Apresentamos também um resultado relacionado com a solução do problema de Monge-Kantorovich em espaços produto finitos quando conhecemos soluções para o problema nos espaços marginais.