Acuidade visual e codificação neural da mosca Chrysomya megacephala

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Fernandes, Nelson Mesquita
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-25032010-161256/
Resumo: Descrevemos os processos de captura, criação e micromanipulação cirúrgica das moscas Chrysomya megacephala. Apresentamos os processos de geração de estímulo e registro da atividade dos dois neurônios H1 localizados na placa lobular de seu cérebro. Um primeiro resultado apresentado refere-se a acuidade de seu sistema visual. Desenvolvemos um procedimento para comparar sua taxa de disparos espontâneos com as respostas do neurônio H1 quando sujeito a estímulos de excitação e inibição. Mostramos que o sistema visual da mosca não está apenas adaptado a detectar grandes fluxos ópticos mas também, é capaz de detectar pequenas velocidades de aproximadamente 1, 5o.s-1 e de apenas 0,25o de amplitude. Estes valores mostram que a mosca é capaz de detectar deslocamentos angulares muito menores do que sua abertura omatidial, = 1 2o. Outro resultado apresentado é obtido ao estudarmos o processo de codificação-decodificação neural. Alguns sistemas sensoriais agem como um conversor analógico-digital, recebendo um estímulo S(t) e codificando-o em uma sequência de pulsos, spikes. O processo de decodificação da resposta neural consiste em receber este conjunto pulsos e gerar uma estimativa Se(t) do estmulo. Este processo requer a computação e subsequente inversão de funções de correlação de alta ordem. A dimensão das matrizes que representam estas funções pode se tornar proibitivamente grande. Apresentamos um eficiente método para reduzir estas funções de correlação. Esta aproximação tem baixo custo computacional, evita a inversão de grandes matrizes e nos da um excelente resultado para a reconstrução do estímulo. Testamos a qualidade de nossa reconstrução sobre estímulos de rotação e translação. A contribuição dos núcleos de segunda ordem para a reconstrução do estímulo é de apenas 8% da contribuição dos núcleos de primeira ordem. Entretanto, em instantes específicos, a adição destes núcleos pode representar uma contribuição de ate 100%. Finalmente, investigamos quais atributos do estímulo são codificados pelos neurônios H1. Nosso espaço de estímulos possui um conjunto da ordem de 2 × 1096 elementos. É impossível imaginar que o sistema formado pelos dois neurônios H1 seja capaz de codificar eficientemente esta enorme quantidade de elementos. É razoável considerar que este sistema seja ao menos capaz de codificar um atributo essencial do movimento, seu sentido - rotações horizontais para direita ou para esquerda. Desta forma, apresentamos dois estímulos distintos para a mosca, um no qual suas velocidades são retiradas de uma distribuição Gaussiana e outro que contem apenas o sentido deste movimento. Obtemos uma correlação da ordem de 80 - 90% entre as estimativas de ambos os estímulos, estimativas obtidas através do processo de reconstrução linear. Obtemos aproximadamente 85% de eficiência na predição do sentido deste movimento. Ao utilizarmos a Teoria da Informação, encontramos uma diferença de apenas 10% entre as taxas de informação transmitida sobre os estímulos Gaussiano e sua versão reduzida. Concluímos que a propriedade comum a estes dois estímulos, o sentido do movimento, é o atributo relevante a ser codificado pelos neurônios H1.