Inferência probabilística em sistemas com restrições de tempo e memória.

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Ramos, Fabio Tozeto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3132/tde-04012024-162828/
Resumo: Um dos maiores desafios que os sistemas de Inteligência Artificial têm de enfrentar atualmente é como possibilitar que grandes e complexos modelos de representação do conhecimento possam ser embarcados em dispositivos computacionais com recursos limitados. No presente trabalho este problema é tratado no contexto de modelos probabilísticos em Inteligência Artificial, mais precisamente, redes Bayesianas. Um novo algoritmo, capaz de produzir inferências sob várias restrições de tempo e espaço, é proposto e testado. Caracterizando-se por sua adaptabilidade e pela utilização de métodos de condicionamento, o algoritmo recebe o nome de condicionamento adaptativo. As diversas técnicas empregadas, assim como a possibilidade de produzir inferências associando vários algoritmos diferentes sob sua supervisão, tornam este algoritmo flexível e apto a ser utilizado em sistemas embarcados ou equipamentos com recursos limitados. Resultados experimentais com redes de grande porte são apresentados em gráficos de três dimensões (Qualidade da resposta x Memória x Tempo), indicando seu desempenho com redes reais.