Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Zhuofan, Wu |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/17/17139/tde-25032011-122803/
|
Resumo: |
O presente estudo tem por objetivo estudar a aplicabilidade de modelos de regressão binária com resposta contínua na análise de dados do SINASC (Sistema de Informações de Nascidos Vivos), analisando suas vantagens, limitações e estratégias na estimação de parâmetros ao identi
car os fatores de riscos para baixo peso ao nascer. Muitos autores vêm utilizando os dados do SINASC para estudar as variáveis que estão associadas ao baixo peso ao nascer. Estes autores geralmente utilizam o modelo usual de regressão logística, o qual analisa somente respostas binárias (a variável resposta é codi
cada como 1: baixo peso ao nascer, 0: caso contrário). O modelo de regressão com resposta contínua foi utilizado para estudar as variáveis associadas aos recém-nascidos com maior propensão a um peso ao nascer inferior ao ponto de corte 2500g, ou seja, a resposta é expressa em uma variável contínua. Nesta situação, uma extensão do modelo tradicional foi utilizada visando a possibilidade de obter-se estimativas mais precisas. Para a estimação de parâmetros do modelo de regressão binária com resposta contínua, foi utilizado o método da máxima verossimilhança. Os resultados obtidos a partir da metodologia proposta possui as seguintes vantagens em relação ao modelo usual: (a) o modelo de regressão proposto foi capaz de predizer o baixo peso ao nascer com maior precisão; (b) o modelo proposto evita problemas de separação persistentes em modelos usuais. Desta forma, o modelo estudado poderá oferecer signi
cativas contribuições à Saúde Coletiva, ao trazer uma nova possibilidade de análise de dados desta área. |