Folheações infinitesimalmente polares

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Briquet, Rafael
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052011-115816/
Resumo: O objetivo central desta dissertação é apresentar as folheações infinitesimalmente polares, fornecendo uma demonstração para o teorema que as caracteriza. Seguimos a abordagem original encontrada em Lytchak e Thorbergsson [25], de 2010. Diretamente da definição e do teorema principal obtem-se dois exemplos: folheações polares e folheações riemannianas singulares de codimensão 1 ou 2. Dedicamos especial atenção a um terceiro exemplo: folheações sem pontos horizontalmente conjugados. A demonstração deste resultado utiliza resultados obtidos anteriormente pelos mesmos autores em 2007, Lytchak e Thorbergsson [24]. Abordamos também, brevemente, as implicações do teorema caracterizador (que é um resultado local) sobre o quociente global de uma folheação infinitesimalmente polar. Variedades com folheações infinitesimalmente polares podem ser encaradas como um objeto que apresenta aspectos clássicos do teorema do toro maximal para grupos de Lie compactos, em um contexto mais amplo.