Classifier ensemble feature selection for automatic fault diagnosis

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Boldt, Francisco de Assis
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Doutorado em Ciência da Computação
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
004
Link de acesso: http://repositorio.ufes.br/handle/10/9872
Resumo: An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study.