Detalhes bibliográficos
Ano de defesa: |
1992 |
Autor(a) principal: |
Barboza, Ruy |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18135/tde-06122013-114835/
|
Resumo: |
Neste trabalho as equações fenomenológicas (tetra-dimensionais) de Hodgkin-Huxley [5], para a membrana da fibra do neurônio, são estudadas mediante transformações não-lineares de variáveis. As transformações de variáveis visam estabelecer um processo controlado de redução de variáveis até chegar a um modelo bidimensional com o menor prejuízo quantitativo possível. O objetivo primordial é aprofundar o entendimento da aparente relação das equações de Hodgkin-Huxley com uma versão da equação de 2ª ordem de van der Pol, conhecida na literatura pelos nomes de equação de FitzHugh-Nagumo [83], equação de Nagumo [84] ou equação Bonhoeffer-van der Pol [7]. É proposta também uma nova formulação matemática para o modelo da corrente de potássio. Estas modificações possibilitam a elaboração de uma remodelagem do aspecto e funcionamento interno do circuito equivalente da membrana. Este circuito, além de facilitar as simplificações para comparar as novas equações em relação ao modelo tipo van der pol, apresenta também potencial teórico mais desenvolvido do que o circuito equivalente original de Hodgkin-Huxley, já que ao contrário deste os elementos do novo circuito podem ser mais facilmente reconhecidos e manipulados dentro da teoria usual de circuitos elétricos. Uma primeira conseqüência da concepção do novo circuito, aqui explorada, é a formulação do modelo da membrana na linguagem da mecânica analítica. |