Um método de interface imersa de alta ordem para a resolução de equações elípticas com coeficientes descontínuos

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Colnago, Marilaine
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24072018-104953/
Resumo: Problemas de interface do tipo elípticos são frequentemente encontrados em dinâmicas de fluidos, ciências dos materiais, mecânica e outros campos de estudo. Em particular, o clássico Método de Interface Imersa (IIM) figura como uma das abordagens numéricas mais robustas para resolver problemas dessa categoria, o qual tem sido empregado recorrentemente para simular o comportamento de fluxos sobre corpos imersos em malhas cartesianas. Embora esse método seja eficiente e robusto, técnicas construídas com base no IIM impõem como restrições matemáticas diversos tipos de condições de salto na interface a fim de serem passíveis de utilização na prática. Nesta tese, introduzimos um novo método de Interface Imersa para resolver problemas elípticos com coeficientes descontínuos em malhas cartesianas. Diferentemente da maioria das formulações existentes que dependem de vários tipos de condições de salto para produzirem uma solução para o problema elíptico, o esquema aqui proposto reduz significativamente o número de restrições ao solucionar a EDP estudada, isto é, apenas os saltos de ordem zero das incógnitas devem ser fornecidos. A técnica apresentada combina esquemas de Diferenças Finitas, abordagem do Ponto Fantasma, modelos de correções e regras de interpolação em uma metodologia única e concisa. Além disso, o método proposto é capaz de produzir soluções de alta ordem, incluindo cenários onde há poucos dados disponíveis onde o quesito alta precisão é indispensável. A robustez e a precisão do método proposto são verificadas através de uma variedade de experimentos numéricos envolvendo diversos problemas elípticos com interfaces arbitrárias. Finalmente, a partir dos testes numéricos conduzidos, é possível concluir que o método projetado produz aproximações de alta ordem a partir de um número muito condensado de restrições matemáticas.