Análise de desempenho de um método de interfaces imersas de alta ordem

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Paino, Paulo Celso Vieira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CFD
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18148/tde-24072013-132604/
Resumo: No contexto de Dinâmica de Fluidos Computacional, métodos de simulação de objetos imersos em Malhas Cartesianas têm se mostrado vantajosos tanto em termos de Custo Computacional quanto em termos de precisão numérica. Entretanto, a representação física de objetos imersos nesses domínios computacionais impõe a perda de validade dos esquemas de Diferenças Finitas empregados, na região das superfícies introduzidas. Este trabalho analisa um Método de Interfaces Imersas quanto ao desempenho em aplicações a esquemas de solução numérica de Alta Ordem de precisão. Através de Testes de Refinamento de Malha, é feita a apreciação da ordem de decaimento dos erros das soluções numéricas em comparação com as soluções analíticas para 2 problemas unidimensionais. O primeiro envolve a solução da Equação de Calor unidimensional sujeita a uma Condição Inicial Unitária, e o segundo relaciona-se ao cálculo das duas primeiras derivadas espaciais das funções analíticas Seno e Tangente Hiperbólica. Também é promovida uma análise de forma fragmentária do método, a fim de individualizar a contribuição dos elementos envolvidos no comportamento das soluções geradas. Os resultados obtidos indicam eventuais alterações na ordem de precisão dos esquemas de Diferenças Finitas originalmente aplicados. Esse comportamento e visto como uma dependência que o método escolhido apresenta em relação a função discretizada. Por fim, são elaboradas considerações sobre restrições de aplicabilidade do método escolhido.