Zeros Elementares de Álgebras de Lie de Campos de Vetores

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Martins Junior, Luiz Carlos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012018-144349/
Resumo: Quando um grupo de Lie nilpotente age sem pontos fixos sobre uma superfície compacta M, a característica de Euler X(M) de M é zero [11]. Isso sugere a possibilidade de um teorema tipo Poincaré-Hopf para ações destes grupos em variedades compactas. J.F.Plante em seu artigo \"Elementary Zeros of Lie Algebras of Vector Fields\" , [12], obtém urna caracterização dos zeros elementares dessas álgebras em dois casos: quando g é nilpotente e quando g é semi-simples. Ele também mostra que para uma álgebra de Lie abeliana g de campos de vetores de uma superfície compacta, tal que todo zero de g é elementar, existe um subconjunto S ⊂ g tal que g — S tem medida nula e para todo X ∈ S valem: (a) O conjunto de zeros isolados de X coincide com o conjunto (finito) de zeros de g; (b) Se p1,..., pk são os zeros de g então ∑k1=1 índice (X, pi ) = x (M) . Baseado neste teorema e em um exemplo, ele mostra que não é possivel definir o índice de g em um zero isolado p como o índice de um zero de um elemento genérico X ∈ S em p. Embora ele não diga, o leitor fica com a impressão que um teorema do tipo Poincaré-Hopf, como mencionado no começo, não parece existir. Nesta dissertação faço uma exposição detalhada do artigo de J.F.Plante ilustrando com exemplos os teoremas do artigo.