Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Araujo, Michael Viriato |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3139/tde-14012008-112255/
|
Resumo: |
Investiga-se, em tempo discreto, o problema multi-período de otimização de carteiras generalizado em média-variância cujos coeficientes de mercado são modulados por uma cadeia de Markov finita. O problema multi-período generalizado de média-variância com saltos Markovianos (PGMV ) é um problema de controle estocástico sem restrição cuja função objetivo consiste na maximização da soma ponderada ao longo do tempo da combinação linear de três elementos: o valor esperado da riqueza do investidor, o quadrado da esperança desta riqueza e a esperança do quadrado deste patrimônio. A principal contribuição deste trabalho é a derivação analítica de condições necessárias e suficientes para a determinação de uma estratégia ótima de investimento para o problema PGMV . A partir deste modelo são derivadas várias formulações de médiavariância, como o modelo tradicional cujo objetivo é maximizar o valor esperado da riqueza final do investidor, dado um nível de risco (variância) do portfólio no horizonte de investimento, bem como o modelo mais complexo que busca maximizar a soma ponderada das esperanças da riqueza ao longo do tempo, limitando a perda deste patrimônio em qualquer momento. Adicionalmente, derivam-se formas fechadas para a solução dos problemas citados quando as restrições incidem somente no instante final. Outra contribuição deste trabalho é a extensão do modelo PGMV para a solução do problema de seleção de carteiras em média-variância com o objetivo de superar um benchmark estocástico, com restrições sobre o valor esperado ou sobre a variância do tracking error do portfólio. Por fim, aplicam-se os resultados obtidos em exemplos numéricos cujo universo de investimento são todas as ações do IBOVESPA. |