Sobre auto-aprendizado de representações para realce da voz 3D.

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Guimarães, Heitor Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3142/tde-26072023-090438/
Resumo: Métodos baseados em redes neurais profundas ganharam uma grande importância ao se mostrarem alternativas viáveis e poderosas para diversas tarefas, em especial para tarefas de processamento da voz, como reconhecimento de fala, detecção de palavras-chaves e reconhecimento de emoções. Entretanto esses métodos possuem alguns problemas intrínsecos, especialmente no que tange à robustez na presença de fatores deletérios, como ruídos e reverberação. Neste trabalho abordamos o problema de realce da voz, que tem como objetivo ser um sistema de pré-processamento capaz de realçar as características da voz e suprimir ruídos. Algoritmos baseados em modelos estatísticos abordam isto como um problema de maximização de verossimilhança. No entanto, não há garantias de que melhorará características perceptivas, como a inteligibilidade. Estudamos o uso de representações de fala extraídas do modelo wav2vec como função de custo perceptiva para a tarefa de realce da voz. Nossos experimentos demonstram que o uso de modelos de aprendizado contrastivo em funções de custo, para levar em conta características perceptivas, pode melhorar o desempenho do aprimoramento de fala em ambientes 3D. Além disso, discutimos o uso de modelos no domínio do tempo e do tempo-frequência. Nossos melhores resultados são obtidos através de modelos tempo-frequência, em detrimento do custo computacional.