Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Macêra, Márcia Aparecida Centanin |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092011-164458/
|
Resumo: |
Os modelos normais de regressão têm sido utilizados durante muitos anos para a análise de dados. Mesmo nos casos em que a normalidade não podia ser suposta, tentava-se algum tipo de transformação com o intuito de alcançar a normalidade procurada. No entanto, na prática, essas suposições sobre normalidade e linearidade nem sempre são satisfeitas. Como alternativas à técnica clássica, foram desenvolvidas novas classes de modelos de regressão. Nesse contexto, focamos a classe de modelos em que a distribuição assumida para a variável resposta pertence à classe de distribuições simétricas. O objetivo geral desse trabalho é a modelagem desta classe no contexto bayesiano, em particular a modelagem da classe de modelos não-lineares heterocedásticos simétricos. Vale ressaltar que esse trabalho tem ligação com duas linhas de pesquisa, a saber: a inferência estatística abordando aspectos da teoria assintótica e a inferência bayesiana considerando aspectos de modelagem e critérios de seleção de modelos baseados em métodos de simulação de Monte Carlo em Cadeia de Markov (MCMC). Uma primeira etapa consiste em apresentar a classe dos modelos não-lineares heterocedásticos simétricos bem como a inferência clássica dos parâmetros desses modelos. Posteriormente, propomos uma abordagem bayesiana para esses modelos, cujo objetivo é mostrar sua viabilidade e comparar a inferência bayesiana dos parâmetros estimados via métodos MCMC com a inferência clássica das estimativas obtidas por meio da ferramenta GAMLSS. Além disso, utilizamos o método bayesiano de análise de influência caso a caso baseado na divergência de Kullback-Leibler para detectar observações influentes nos dados. A implementação computacional foi desenvolvida no software R e para detalhes dos programas pode ser consultado aos autores do trabalho |