"Métodos para análise discursiva automática"

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Pardo, Thiago Alexandre Salgueiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29082005-172336/
Resumo: Pesquisas em Lingüística e Lingüística Computacional têm comprovado há tempos que um texto é mais do que uma simples seqüência de sentenças justapostas. Um texto possui uma estrutura subjacente altamente elaborada que relaciona todo o seu conteúdo, atribuindo-lhe coerência. A essa estrutura dá-se o nome de estrutura discursiva, sendo ela objeto de estudo da área de pesquisa conhecida como Análise de Discurso. Diante da grande utilidade desse conhecimento para diversas aplicações de Processamento de Línguas Naturais, por exemplo, sumarização automática de textos e resolução de anáforas, a análise discursiva automática tem recebido muita atenção. Para o português do Brasil, em particular, há poucos recursos e pesquisas nessa área de pesquisa. Neste cenário, esta tese de doutorado visa a investigar, desenvolver e implementar métodos para análise discursiva automática, adotando como principal teoria discursiva a Rhetorical Structure Theory, uma das teorias mais difundidas atualmente. A partir da anotação retórica e da análise de um corpus de textos científicos da Computação, produziu-se o primeiro analisador retórico automático para a língua portuguesa do Brasil, chamado DiZer (DIscourse analyZER), além de uma grande quantidade de conhecimento discursivo. Apresentam-se modelos estatísticos inéditos para o reconhecimento de relações discursivas baseados em unidades de conteúdo de crescente complexidade, abordando palavras, conceitos e estruturas argumentais. Em relação a este último item, é apresentado um modelo para o aprendizado não supervisionado das estruturas argumentais dos verbos, o qual foi aplicado para os 1.500 verbos mais freqüentes do inglês, resultando em um repositório chamado ArgBank. O DiZer e os modelos propostos são avaliados, produzindo resultados satisfatórios.