Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Pinheiro, Gustavo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10112014-162434/
|
Resumo: |
No Ensino à Distância via Internet, o professor não tem contato físico com seus alunos e, por isso, perde consideravelmente a percepção da interação destes em relação ao material didático. Além disso, pode-se atingir um número muito grande de usuários caso o meio de ensino seja a Web. Então, é importante dar ao professor ferramentas que o ajudem a conhecer seus alunos e a planejar sua atuação de forma a atender melhor um grande número de alunos. Sabe-se que a Web é um meio que pode ser ricamente instrumentado. Em princípio, cada clique num hyperlink, cada visita e outros dados de atividade online podem ser capturados e armazenados para futura análise. Entretanto, a quantidade de dados que se obtém pode ser imensa, tornando sua análise trabalhosa e demorada. Surge, então, o problema de analisar esses dados a fim de se extrair informações úteis. Pesquisas na área de Mineração de Dados fornecem ferramentas úteis para tratar este problema, sendo que métodos de agrupamento são particularmente interessantes. Uma das dificuldades encontradas nesta nova área, chamada de Web Usage Mining (WUM), é lidar simultaneamente com dados categóricos e contínuos. Neste trabalho desenvolveu-se um novo método de agrupamento, o LogiCluster, baseado no Modelo de Regressão Logística, o qual é adequado para dados categóricos e contínuos, tanto em separado quanto em conjunto. |