Agrupamento visual em grandes conjuntos de dados multidimensionais

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Gamero, Eduardo Jose Tejada
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-03122014-084211/
Resumo: O agrupamento visual de dados é uma abordagem que integra conceitos de visualização de informação e de aprendizado de máquina, especificamente por agrupamento, em um único algoritmo. Isso permite aproveitar a capacidade dos seres humanos para tomar decisões baseados em conhecimento específico de domínio, bem como a capacidade dos computadores para registrar, armazenar, manipular, e recuperar dados. Este trabalho apresenta a pesquisa realizada nessa linha, a qual tratou problemas específicos presentes nos métodos de agrupamento visual de dados. O principal problema em estudo foi a escalabilidade de algoritmos de agrupamento visual baseados em densidade, propondo meios para acelerar os processos de cálculo de projeções e de estimativa de densidade envolvidos neles. Como resultado é apresentado o algoritmo HC-Enhanced, que possui desempenho bastante superior ao algoritmo HC-Cooperative no qual é baseado, além de um dispositivo de melhoria do agrupamento.