Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Muniz, Frederico Barbosa |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/59/59143/tde-10042021-112315/
|
Resumo: |
O câncer é a segunda principal causa de morte no mundo e o câncer do cólon está entre os três tipos mais comuns. Normalmente o diagnóstico desta doença é realizado por meio de exames histológicos em lâminas contendo tecido de biópsia, coradas com Hematoxilina e Eusina. As pesquisas visando o diagnóstico baseado em imagens digitais de biópsia têm crescido com rapidez, alavancando o desenvolvimento e o aperfeiçoamento de métodos de processamento de imagens especialmente desenvolvidos ou adaptados para esta categoria. As imagens hiperespectrais, obtidas a partir da medida de absorbância em diferentes frequências de aplicação de raios infravermelhos sobre o tecido, por sua vez, apresentam relações com características histoquímicas valiosas. Neste projeto, foi desenvolvido um método para processamento de sinais hiperespectrais obtidos a partir de amostras de biópsia do tecido do cólon, com a modelagem e a implementação de um classificador para identificação de anomalias, utilizando técnicas de Aprendizagem Profunda, assim como o desenvolvimento de uma ferramenta computacional, visando auxiliar o patologista durante o processo de diagnóstico de câncer do cólon. A partir dos espectros de absorbância de infravermelho de cada pixel pertencente a regiões das amostras previamente identificadas como normais, cancerígenas ou inflamadas, o classificador desenvolvido atingiu valores de acurácia para estas três classes superiores a 94%, indicando que a ferramenta possa ser considerada promissora para o auxílio ao diagnóstico de lesões do cólon, fornecendo uma segunda opinião para os especialistas. |