Detalhes bibliográficos
Ano de defesa: |
1993 |
Autor(a) principal: |
Barbato, Daniela Maria Lemos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/54/54131/tde-05092008-144618/
|
Resumo: |
Perceptrons são redes neurais sem retroalimentação onde os neurônios estão dispostos em camadas. O perceptron considerado neste trabalho consiste de uma camada de N neurônios sensores Si = ±1; i = 1, , N ligados a um neurônio motor δ através das conexões sinápticas (pesos) Wi; i = 1, ..., N cujos valores restringimos a ±1. Utilizando o formalismo de Mecânica Estatística desenvolvido por Gardner (1988), estudamos os efeitos de eliminarmos uma fração de conexões sinápticas (diluição ) nas capacidades de memorização e generalização da rede neural descrita acima. Consideramos também o efeito de ruído atuando durante o estágio de treinamento do perceptron. Consideramos dois tipos de diluição: diluição móvel na qual os pesos são cortados de maneira a minimizar o erro de treinamento e diluição fixa na qual os pesos são cortados aleatoriamente. A diluição móvel, que modela lesões em cérebro de pacientes muito jovens, pode melhorar a capacidade de memorização e, no caso da rede ser treinada com ruído, também pode melhorar a capacidade de generalização. Por outro lado, a diluição fixa, que modela lesões em cérebros de pacientes adultos, sempre degrada o desempenho da rede, sendo seu principal efeito introduzir um ruído efetivo nos exemplos de treinamento. |