Combinatória: dos princípios fundamentais da contagem à álgebra abstrata

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Fernandes, Renato da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55136/tde-31012018-161438/
Resumo: O objetivo deste trabalho é fazer um estudo amplo e sequencial sobre combinatória. Iniciase com os fundamentos da combinatória enumerativa, tais como permutações, combinações simples, combinações completas e os lemas de Kaplanski. Num segundo momento é apresentado uma abordagem aos problemas de contagem utilizando a teoria de conjuntos; são abordados o princípio da inclusão-exclusão, permutações caóticas e a contagem de funções. No terceiro momento é feito um aprofundamento do conceito de permutação sob a ótica da álgebra abstrata. É explorado o conceito de grupo de permutações e resultados importantes relacionados. Na sequência propõe-se uma relação de ordem completa e estrita para o grupo de permutações. Por fim, investiga-se dois problemas interessantes da combinatória: a determinação do número de caminhos numa malha quadriculada e a contagem de permutações que desconhecem padrões de comprimento três.