Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Câmara, Amanda Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-17102017-151821/
|
Resumo: |
Nas duas últimas décadas, houve um enorme aumento no número de estruturas proteicas resolvidas, e entre elas há uma variedade imensa de proteínas com mais de uma conformação observada. Essa quantidade incontestável de dados experimentais corroboram a hipótese de que cada proteína exista num espaço conformacional próprio, onde ela possa adotar inúmeras conformações, umas mais distintas ou estáveis que outras. Essas conformações estão distribuídas nesse espaço de acordo com sua energia potencial, que pode ser definida como uma superfície cheia de rugosidades, poços e barreiras energéticas. Duas conformações distantes nesse espaço são muito diferentes entre si, enquanto que duas conformações próximas são mais semelhantes. Da mesma forma, se distinguem os movimentos necessários para passar de uma conformação à outra. Para uma proteína passar de um estado a outro, geralmente identificados com grandes mudanças conformacionais, é necessário um movimento coletivo. Por ser de grande amplitude, esse tipo de movimento ocorre com baixa frequência, e dificilmente é observado em simulações clássicas de dinâmica molecular. Assim, existem métodos dedicados à obtenção destes movimentos, como a análise de modos normais, os modelos de redes elásticas e a análise de componentes principais. Neste trabalho, adaptamos o método de transformada de Fourier para recuperar modos harmônicos que compõem uma trajetória simulada suficientemente longa para analisar três proteínas distintas quanto a seus movimentos biológicos de importância funcional. Uma é a DEA, cuja simetria hexagonal observamos influenciar nos modos coletivos e na transição entre estados. Outra é a MosR, que simulamos em seus dois estados diferentes, oxidado ou reduzido, para encontrar como a oxidação é capaz de impedir os movimentos coletivos que levam à conformação ligada ao DNA. Nestas duas proteínas, observamos que nenhum modo por si só é responsável pela transição entre as conformações experimentais, mas que eles dependem de outros modos ou outras mudanças conformacionais ocorrendo de forma combinada. A terceira proteína analisada é um regulador transcricional, assim como a MosR, a ElrR, cuja estrutura é conhecida somente na forma apo. Neste trabalho, construímos modelos da ElrR ligada ao DNA pela combinação linear de modos harmônicos para modelar um possível ligante na nova conformação do sítio alostérico. As amplitudes usadas nessa combinação foram obtidas pelo método de mínimos quadrados, visando minimizar o desvio em relação somente às coordenadas que as hélices de reconhecimento devem apresentar para se ligar ao sítio de DNA. Este prognóstico foi feito pela análise metódica das estruturas de 27 reguladores transcricionais, homodiméricos com o motivo HTH, em complexo com DNA. Essa análise também nos permitiu descrever a estereoquímica do encaixe das hélices de reconhecimento nos sulcos maiores do DNA com novos parâmetros geométricos, intimamente relacionados com a simetria do complexo, com a sequência de resíduos das hélices de reconhecimento e com a sequência de bases do sítio de DNA, de forma a auxiliar na modelagem de novos complexos. |