Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Câmara, Amanda Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-18042013-101101/
|
Resumo: |
Sistemas alostéricos são característicos de proteínas com um ou mais estados de equilíbrio. Nesse sentido, uma enzima passa por modificações de sua atividade quando um substrato cooperativo se liga a um estado ou outro (1). Estes estados são reconhecidos por possuírem uma conformação mais estável e coexistirem num ensemble. Este trabalho sustenta que tais proteínas oscilem naturalmente entre esses estados. Experimentos de difração de raios-X e RMN, que proporcionam parâmetros de deslocamento anisotrópicos e tempos de relaxação de spin nuclear, já demonstram a coexistência de ambos estados em solução e descrevem o movimento como uma mudança de equilíbrio populacional dos confórmeros (2). Também é possível desenvolver métodos numéricos, como o cálculo de modos normais e a simulação de dinâmica molecular, para associar a geometria proteica a um movimento sobre determinado potencial de campos de força. O sistema adotado para o desenvolvimento desses estudos é a enzima alostérica Glucosamina-6-fosfato Desaminase. Características que defendem seu uso são sua reversibilidade catalítica, rápido equilíbrio cinético e muito baixa afinidade do estado T por ligantes. Sua estrutura também já foi resolvida por experimentos de cristalografia, identificando ambos estados alostéricos. E a caracterização das mudanças estruturais entre os estados T e R está bem estabelecida, identificando diferentes subunidades a distintos graus de rotação e prevendo uma oscilação de baixa frequência entre eles (3). Resultados obtidos neste projeto constituem: (a) uma dinâmica de 100ns partindo do estado T de toda a proteína (hexamérica) solvatada explicitamente, formando um ensemble NVT de 92000 átomos através do programa NAMD, usando o campo de forças CHARMM; (b) análise de componentes principais aproveitando esta dinâmica e usando algoritmos do programa Gromacs; (c) e análise de modos normais, em que os cálculos de minimização de energia foram feitos pelo programa Gromacs sob o campo de forças ENCADV, no vácuo. Análises desses resultados envolvem cálculos de RMSDs e flutuações, trajetórias calculadas para os autovetores oriundos de NMA ou de PCA, fatores de Debye-Waller e a confirmação visual (e gráficos de distância entre resíduos) de aproximação a um estado ou outro. Como a prévia caracterização da movimentação alostérica, identificava duas regiões para cada monômero como representativas de corpos rígidos, também é desenvolvida uma análise por tensores de inércia. Espera-se que, ao longo do tempo, essas subunidades se comportem como corpos quase rígidos e os movimentos destas regiões rígidas correspondam a uma maior representatividade da transição alostérica. Assim, a caracterização dos tensores seria capaz de filtrar movimentos de mais alta frequência que constituem ruído em relação a movimentos funcionais da proteína. - Algoritmos para cálculos matriciais dos tensores foram escritos em Fortran e em TCl. |