Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Louro, Antonio Henrique Figueira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18152/tde-29072016-164415/
|
Resumo: |
Este trabalho mostra que a suavização Gaussiana pode exercer outra função além da filtração. Considerando-se imagens binárias, este processo pode funcionar como uma espécie de marcador, que modifica as feições das fronteiras entre duas regiões homogêneas contrastantes. Tais feições são pontos de concavidades, de convexidades ou de bordas em linha reta. Ou seja, toda a informação necessária para se caracterizar a forma bidimensional de uma região. A quantidade de suavização realizada em cada ponto depende da configuração preto/branco que compõe a vizinhança onde este se situa. Isto significa que cada ponto sofre uma quantidade particular de modificação, a qual reflete a interface local entre o objeto e o fundo. Então, para detectar tais feições, basta quantificar a suavização em cada ponto. No entanto, a discriminação pixel a pixel exige que a distribuição Gaussiana apresente boa localização, o que só acontece em escalas muito baixas (σ≅0,5). Assim, propõe-se uma distribuição construída a partir da soma de duas Gaussianas. Uma é bem estreita para garantir a boa localização e a outra possui abertura irrestrita para representar a escala desejada. Para confirmar a propriedade de marcação dessa distribuição, são propostos três detectores de corners de contorno, os quais são aplicados à detecção de pontos dominantes. O primeiro utiliza a entropia de Shannon para quantificar a suavização em cada ponto. O segundo utiliza as probabilidades de objeto e de fundo contidos na vizinhança observada. O terceiro utiliza a diferença entre Gaussianas (DoG) para determinar a quantidade suavizada, porém com a restrição de que uma das versões da imagem tenha suavização desprezível, para garantir a boa localização. Este trabalho se fundamenta na física da luz e na visão biológica. Os ótimos resultados apresentados sugerem que a detecção de curvaturas do sistema visual pode ocorrer na retina. |