Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Costa, Jorge Carvalho |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3144/tde-26112010-114825/
|
Resumo: |
O Método dos Elementos Finitos é a forma mais difundida de análise estrutural numérica, com aplicações nas mais diversas teorias estruturais. Contudo, no estudo das cascas e alguns outros usos, suas deficiências impulsionaram a pesquisa em outros métodos de resolução de Equações Diferenciais Parciais. O presente trabalho utiliza uma dessas alternativas, o Método de Galerkin Livre de Elementos (Element-Free Galerkin) para estudar as cascas. Inicia com a observação da aproximação usada no método, os Moving Least Squares e os Multiple-Fixed Least Squares. A seguir, estabelece uma formulação que combina a teoria de placas moderadamente espessas de Reissner-Mindlin à teoria da Elasticidade Plana e se utiliza da aproximação estudada para analisar placas e chapas deste tipo. Depois, expõe uma teoria geometricamente exata de cascas inicialmente curvas onde as curvaturas iniciais são impostas como deformações livres de tensão a partir de uma configuração de referência plana. Tal teoria exclui a necessidade de coordenadas curvilíneas e consequentemente da utilização de objetos como os símbolos de Cristoffel, já que todas as integrações e imposições são feitas na configuração plana de referência, em um sistema ortonormal de coordenadas. A imposição das condições essenciais de contorno é feita por forma fraca, resultando em um funcional híbrido de deslocamentos que permite a maleabilidade necessária ao uso dos Moving Least Squares. Esse trabalho se propõe a particularizar tal teoria para o caso de pequenos deslocamentos e deformações (linearidade geométrica), mantendo a consistência das definições de tensões e deformações generalizadas enquanto permite uma imposição da forma fraca resultante, depois de discretizada, por um sistema linear de equações. Por fim, exemplos numéricos são usados para discutir sua eficácia e exatidão. |