Álgebras de grupo cujas unidades satisfazem uma identidade de grupo

Detalhes bibliográficos
Ano de defesa: 1997
Autor(a) principal: Ferraz, Raul Antonio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-015343/
Resumo: Seja F[G] a álgebra de grupo do grupo G sobre o corpo F, e seja U(F[G]) o seu grupo de unidades. O principal objetivo deste trabalho é investigar a validade da seguinte conjectura, devida a Brian Hartley (problema 52, pag 307 de [Seh93]):Conjectura: Se G é um grupo de torção e U(F[G]) satisfaz uma identidade de grupo, então F[G] satisfaz uma identidade polinominal. Como suporte da afirmação acima provaremos: Teorema 1:[GJV94],[GSV97].A conjectura é verdadeira se F é infinito.Teorema 2:[Past97]. Se F é infinito, char F = p > 0 e G é um grupo de torção, então U(F[G]) satisfaz uma identidade de grupo se, e somente se, G possui um subgrupo abeliano normal de índice finito, e G' é um p-grupo de expoente limitado