Redes Bayesianas para classificação com aprendizado via Scoring and Restrict: método, aplicação e comparação com métodos tradicionais

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Ozelame, Camila Sgarioni
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-23062021-111521/
Resumo: Este trabalho é uma investigação sobre o comportamento das Redes Bayesianas (RB) discretas que visam resolver problemas de classificação. Esta metodologia é baseada em teorias dos grafos e de probabilidade, sendo as RBs definidas como um modelo gráfico probabilístico que permite visualizar as relações entre as variáveis consideradas aleatórias e, em geral, simplifica o entendimento de domínios complexos. Com o intuito de compreender seu desempenho, foram selecionados os classificadores Naïve Bayes (NB), o Tree Augmented Naïve Bayes (TAN), o K-Dependence Bayesian Network (KDB), o Bayesian Network Augmented Naïve Bayes (BAN), o General Bayesian Network (GBN) e o Averaged One-Dependence Estimator (AODE) para serem comparados. Desse modo, o AODE, um classificador combinado, apresenta a melhor performance preditiva em relação aos demais. Aliado a isso, foi proposta uma metodologia híbrida de estimação de rede, que tem como principal objetivo a classificação de maneira mais parcimoniosa. Os estudos de simulação conduzidos apontam que o novo método atende às expectativas de acréscimo na capacidade preditiva e indicam a redução da complexidade das relações entre as variáveis. Além disso, as aplicações em bases de dados reais auxiliam a melhor compreensão em torno da nova abordagem. Por fim, foi avaliada uma combinação entre os classificadores apresentados por meio do stacking, que sinalizou aumento na capacidade preditiva em relação aos classificadores analisados individualmente.