Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Ozelame, Camila Sgarioni |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-23062021-111521/
|
Resumo: |
Este trabalho é uma investigação sobre o comportamento das Redes Bayesianas (RB) discretas que visam resolver problemas de classificação. Esta metodologia é baseada em teorias dos grafos e de probabilidade, sendo as RBs definidas como um modelo gráfico probabilístico que permite visualizar as relações entre as variáveis consideradas aleatórias e, em geral, simplifica o entendimento de domínios complexos. Com o intuito de compreender seu desempenho, foram selecionados os classificadores Naïve Bayes (NB), o Tree Augmented Naïve Bayes (TAN), o K-Dependence Bayesian Network (KDB), o Bayesian Network Augmented Naïve Bayes (BAN), o General Bayesian Network (GBN) e o Averaged One-Dependence Estimator (AODE) para serem comparados. Desse modo, o AODE, um classificador combinado, apresenta a melhor performance preditiva em relação aos demais. Aliado a isso, foi proposta uma metodologia híbrida de estimação de rede, que tem como principal objetivo a classificação de maneira mais parcimoniosa. Os estudos de simulação conduzidos apontam que o novo método atende às expectativas de acréscimo na capacidade preditiva e indicam a redução da complexidade das relações entre as variáveis. Além disso, as aplicações em bases de dados reais auxiliam a melhor compreensão em torno da nova abordagem. Por fim, foi avaliada uma combinação entre os classificadores apresentados por meio do stacking, que sinalizou aumento na capacidade preditiva em relação aos classificadores analisados individualmente. |