Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Smirnov, Andrei Anatolyevich |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-07082013-160530/
|
Resumo: |
Neste trabalho é estudada a equação de Dirac com uma superposição do campo de Aharonov-Bohm (AB) e de um campo magnético colinear uniforme, que nós chamamos de campo magneto-solenoidal (MS). Usando a teoria de von Neumann das extensões auto-adjuntas de operadores simétricos, nós construímos no caso de 2+ 1 dimensões uma família uni paramétrica de hamiltonianos de Dirac auto-adjuntos especificados pelas condições de contorno no solenóide AB, e encontramos o espectro e as auto-funções para cada valor do parâmetro de extensão. Em seguida, reduzimos o problema em 3+ 1 dimensões ao problema em 2+ 1 dimensões pela escolha apropriada do operador de spin, o que permite realizar todo o programa de construção de extensões auto-adjuntas, e assim, também permite obter os espectros e auto-funções em termos do problema em 2+1 dimensões. Ademais, nós apresentamos o método reduzido de extensões auto-adjuntas do hamiltoniano radial de Dirac com o campo MS. Depois nós consideramos o caso regularizado do solenóide de raio finito. Nós estudamos a estrutura das autofunções e a sua dependência com o comportamento do campo magnético dentro do solenóide. Considerando o limite de raio zero para o valor fixo do fl.mm magnético, nós obtemos um hamiltoniano auto-adjunto particular que corresponde à condição de contorno específica para o caso do campo magneto-solenoidal com o solenóide AB. Nós chamamos estes casos particulares das extensões auto-adjuntas extensões naturais. Para completeza da investigação nós estudamos também o comportamento de uma partícula sem spin no campo magneto-solenoidal regularizado. A etapa seguinte da investigação é a construção das funções de Green da equação de Dirac com o campo MS em 2 + 1 e 3 + 1 dimensões. As funções de Green são construídas por meio de um somatório sobre o conjunto completo das soluções da equação de Dirac. Ao construir as funções de Green, nós usamos as soluções exatas da equação de Dirac, que são relacionadas a valores específicos do parâmetro de extensão. Estes valores correspondem às extensões naturais. Depois nós estendemos os resultados ao caso em 3 + 1 dimensões. Nós apresentamos também as funções de Green não relativísticas e as funções de Green de uma partícula relativística escalar. |