Detalhes bibliográficos
Ano de defesa: |
1994 |
Autor(a) principal: |
Felipe, Leonardo Sebastian Guillermo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02072018-102928/
|
Resumo: |
Neste trabalho pesquisamos a ordem de convergência atingível da aproximação num certo espaço polinomial spline para a solução de equações integrais de Volterra de segunda espécie com núcleo regular e fracamente singular. Se considerarmos equações de Volterra com núcleo regular, a suavidade da solução é determinada pela suavidade do núcleo dado e pela função forçante. Isto,por sua vez, implica que a aproximação por colocação exibe ordem ótima de convergência global. Superconvergência local é atingível para alguma escolha apropriada dos parâmetros de colocação. Entretanto, se admitirmos núcleos contendo singularidades fracas do tipo algébrico, e se empregarmos uma sequência de malhas quase-uniforme, então a ordem de convergência global da aproximação é menor que 1, sem considerar o grau da função da aproximação spline. Para restaurar a ordem ótima de convergência, colocação sobre uma malha convenientemente graduada será mostrada. Resultados numéricos verificando a taxa de convergência do método são apresentados. |