Conjuntos dominantes em grafos

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Silva, Wanderley Guimarães da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45134/tde-20230727-113715/
Resumo: Num grafo G, dizemos que um conjunto de vértices S é dominante se todo vértice em V ( G) \ S é adjacente a um vértice de S. Denotamos por y( G) a cardinalidade mínima de um conjunto dominante de G. Nesta dissertação, apresentamos uma resenha que abrange os aspectos estruturais e algorítmicos de problemas relacionados a este tópico. Descrevemos vários resultados e demonstramos alguns sobre limites superiores para y( G), que levam em conta o grau mínimo de G. Caracterizamos também algumas subclasses de grafos G para os quais y( G) atinge precisamente o limite superior provado para a classe dessses grafos. Mostramos que o problema de encontrar um conjunto dominante mínimo é NP-difícil, e apresentamos algoritmos lineares que resolvem esse problema quando o grafo é um disco triangulado ou uma árvore. A maior parte dos resultados apresentados aqui apareceram na literatura. Para alguns resultados, apresentamos provas ou algoritmos diferentes, e alguns corolários novos. Para árvores, projetamos um algoritmo simples que é baseado na enumeração em pós-ordem de seus vértices.