Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Santos, Rafael Joseph Pagliuca dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21082019-165653/
|
Resumo: |
Este trabalho aborda as áreas de teoria dos grafos, sistemas de recomendação, e comércio eletrônico, que já foram tema de diversas publicações ao longo das últimas décadas. Entretanto, o estudo da importância da utilização de medidas de centralidade de redes como atributos preditivos de modelos de aprendizado de máquina é um assunto que ainda não foi explorado pela literatura. Neste trabalho, além de relatarmos resultados que sugerem que essas medidas de centralidade podem aumentar a precisão dos modelos preditivos, também apresentamos os principais conceitos teóricos de redes complexas, como tipos de redes, caracterização, métricas de distância, além de propriedades de redes reais. Também apresentamos as ferramentas e metodologia utilizadas para o desenvolvimento de um webcrawler próprio, software necessário para a construção da rede de produtos comprados em conjunto no comércio eletrônico. Modelos de aprendizado de máquina foram treinados utilizando a base de produtos obtida pelo webcrawler, possibilitando a obtenção de modelos preditivos de estimativa de preços de produtos, e de previsão de probabilidade de ligação entre produtos da rede. A performance dos modelos preditivos obtidos são apresentadas. |