Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Passos, Gabriela |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-24072020-164418/
|
Resumo: |
Com a nova era digital, nota-se que a troca de informação é praticamente instantânea, tornando cada vez mais imprevisível o padrão de comportamento dos clientes. Desta forma, os sistemas de recomendação são fortemente utilizados no mundo, pois entender o cliente e ofertar experiências cada vez mais relevantes faz-se necessário. Com isso, surge a demanda de se criar um algoritmo eficiente que lide corretamente com os novos comportamentos de consumo. Uma maneira de direcionar efetivamente os produtos e serviços das empresas é o sistema de recomendação, que ajuda a melhorar o potencial de consumo e com isso a receita. Estes são também interessantes para o cliente, pois eles apresentam possibilidades baseadas em seus interesses, diminuindo assim o número de objetos indesejados a serem ofertados. Uma forma eficiente de se construir um sistema é encontrando os padrões de consumo dos clientes e desse modo identificar os interesses corretos de cada consumidor. Um conjunto com usuários e objetos, onde cada usuário coleta/compra um certo objeto, é o necessário para se criar um sistema de recomendação. A teoria de redes complexas pode ser utilizada para descrever e modelar tais sistemas. Em particular, para sistemas de recomendação é comum utilizar projeções de redes bipartidas para resolver o problema. Nessa dissertação, serão abordadas formas de recomendação de produtos utilizando uma projeções assimétrica. Com a criação de um sistema de recomendação com a projeção de rede bipartida é possível comparar o método com outras formas de recomendação, como uma recomendação aleatória e a regra de associação. Quando o sistema é testado em momentos distintos é possível verificar que as recomendações feitas através da projeção possuem uma acurácia melhor que os outros sistemas. |