Desenvolvimento de ferramentas e algoritmos em Computational Strain Optmization Models.

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Ohira, Guilherme de Oliveira Mendes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3137/tde-29112023-143720/
Resumo: Deleções de genes podem ser usadas como uma ferramenta para melhoramento de performance de microrganismos no contexto industrial. Apesar do estado-da-arte em biologia molecular possuir diversas técnicas para realizar as deleções, existem poucas estratégias para escolher os alvos. É possível abordar esse problema por técnicas de fluxômica e modelos baseados em restrições (CBM). A fim de assegurar que o objetivo biológico seja respeitado (maximização da biomassa), enquanto se melhora a performance do bioprocesso, é possível formular um problema de dois níveis (BLPP). Esse modelo simula o melhor cenário possível, para uma dada função objetivo industrial, enquanto sugere deleções. O primeiro algoritmo a realizar tal estratégia foi chamado de OptKnock (2003). Uma forma de lidar com o BLPP é reforçando as condições de otimalidade (Condições KKT) do problema interno, transformando o mesmo em um problema com restrições complementares (MPCC). Os autores do OptKnock sugerem aplicar a teoria da dualidade para evitar a não linearidade da complementariedade. Embora tenha sido realizado, nenhuma descrição matemática foi proposta para verificar se o ótimo obtido pelo MPCC é o mesmo obtido pelo BLPP. Na presente dissertação procurou-se verificar: (i) se as Condições KKT são respeitadas no problema interno. (ii) Se a região viável do MPCC e do BLPP são as mesmas para as variáveis primais. (iii) Se a Condição de Slater é verificada. Para tal, deduções e experimentos in silico foram sugeridos. Resultados mostram que as Condições KKT são respeitadas no problema interno. Muito embora, a unicidade das variáveis duais, quando usadas também como variáveis de otimização, possa remodelar os limites viáveis das variáveis primais. Dessa forma, o resultado do MPCC pode não ser o mesmo do BLPP inicialmente sugerido.