Algoritmos para problemas de programação não-linear com variáveis inteiras e contínuas.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Lobato, Rafael Durbano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06072009-130912/
Resumo: Muitos problemas de otimização envolvem tanto variáveis inteiras quanto contínuas e podem ser modelados como problemas de programação não-linear inteira mista. Problemas dessa natureza aparecem com freqüência em engenharia química e incluem, por exemplo, síntese de processos, projeto de colunas de destilação, síntese de rede de trocadores de calor e produção de óleo e gás. Neste trabalho, apresentamos algoritmos baseados em Lagrangianos Aumentados e branch and bound para resolver problemas de programação não-linear inteira mista. Duas abordagens são consideradas. Na primeira delas, um algoritmo do tipo Lagrangianos Aumentados é usado como método para resolver os problemas de programação não-linear que aparecem em cada um dos nós do método branch and bound. Na segunda abordagem, usamos o branch and bound para resolver os problemas de minimização em caixas com variáveis inteiras que aparecem como subproblemas do método de Lagrangianos Aumentados. Ambos os algoritmos garantem encontrar a solução ótima de problemas convexos e oferecem recursos apropriados para serem usados na resolução de problemas não convexos, apesar de não haver garantia de otimalidade nesse caso. Apresentamos um problema de empacotamento de retângulos em regiões convexas arbitrárias e propomos modelos para esse problema que resultam em programas não-lineares com variáveis inteiras e contínuas. Realizamos alguns experimentos numéricos e comparamos os resultados obtidos pelo método descrito neste trabalho com os resultados alcançados por outros métodos. Também realizamos experimentos com problemas de programação não-linear inteira mista encontrados na literatura e comparamos o desempenho do nosso método ao de outro disponível publicamente.