Representações compactas para processos de decisão de Markov e sua aplicação na adminsitração de impressoras.

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Torres, João Vitor
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-05092006-130307/
Resumo: Os Processos de Decisão de Markov (PDMs) são uma importante ferramenta de planejamento e otimização em ambientes que envolvem incertezas. Contudo a especificação e representação computacional das distribuições de probabilidades subjacentes a PDMs é uma das principais dificuldades de utilização desta ferramenta. Este trabalho propõe duas estratégias para representação destas probabilidades de forma compacta e eficiente. Estas estratégias utilizam redes Bayesianas e regularidades entre os estados e as variáveis. As estratégias apresentadas são especialmente úteis em sistemas onde as variáveis têm muitas categorias e possuem forte inter-relação. Além disso, é apresentada a aplicação destes modelos no gerenciamento de grupos de impressoras (um problema real da indústria e que motivou o desenvolvimento do trabalho) permitindo que estas atuem coletiva e não individualmente. O último tópico discutido é uma análise comparativa da mesma aplicação utilizando Lógica Difusa.