Descoberta e reuso de polí­ticas parciais probabilísticas no aprendizado por reforço.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Bonini, Rodrigo Cesar
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-18072019-143338/
Resumo: O aprendizado por reforço é uma técnica bem sucedida, porém lenta, para treinar agentes autônomos. Algumas soluções baseadas em políticas parciais podem ser usadas para acelerar o aprendizado e para transferir comportamentos aprendidos entre tarefas encapsulando uma política parcial. No entanto, geralmente essas políticas parciais são específicas para uma única tarefa, não levam em consideração recursos semelhantes entre tarefas e podem não corresponder exatamente a um comportamento ideal quando transferidas para outra tarefa diferente. A transferência descuidada pode fornecer más soluções para o agente, dificultando o processo de aprendizagem. Sendo assim, este trabalho propõe uma maneira de descobrir e reutilizar de modo probabilístico políticas parciais orientadas a objetos aprendidas, a fim de permitir melhores escolhas de atuação para o agente em múltiplas tarefas diferentes. A avaliação experimental mostra que a proposta é capaz de aprender e reutilizar com sucesso políticas parciais em diferentes tarefas.