Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Biasão, Mirian de Cesaro Revers |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/5/5142/tde-11122019-112343/
|
Resumo: |
O transtorno do espectro autista cursa com alterações precoces na percepção visual, culminando com déficits na comunicação social e comportamentos restritos e estereotipado. Dados objetivos sobre o padrão visual dos indivíduos são obtidos através da técnica de rastreamento do olhar. Sabe se que a técnica é eficaz para identificar indivíduos com TEA quando comparados a controles, mas, ainda não há trabalhos que utilizem esses dados a fim de classificar subtipos do transtorno. O objetivo deste estudo é preencher essa lacuna, e utilizar os dados de rastreamento do olhar associado a padrões de aprendizado de máquina a fim de classificar subgrupos de TEA, quanto a gravidade. Para tanto, foi utilizado modelo baseado em mapas de atenção visual, que utiliza os dados da captação sem filtros. O classificador foi testado pelo método de validação cruzada. Os resultados mostraram que foi possível classificar em TEA grave e não grave com média de 85% de precisão, atingindo o máximo de 88% de precisão, 87% de sensibilidade e 60% de especificidade. Espera-se que novos estudos, envolvendo número maior de indivíduos e outras características fenotípicas, possam ser desenvolvidos utilizando esta técnica, a fim de identificar biomarcadores para o transtorno |