Detalhes bibliográficos
Ano de defesa: |
1996 |
Autor(a) principal: |
Castiñeira, Maria Inés |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-26112008-134011/
|
Resumo: |
O presente trabalho discute a necessidade da representação e manipulação de incertezas na resolução de problemas por sistemas baseados em conhecimento, e como isto pode ser realizado utilizando redes de crenças. Este tipo de representação do conhecimento combina a teoria das probabilidades e teoria da decisão, para representar incertezas, com a teoria dos grafos, esta última apropriada para representar as relações de dependência entre as variáveis do modelo. Os diagramas de inferência - redes de crenças que permitem representar incertezas, decisões e preferências do usuário - são discutidos e adotados neste trabalho para desenvolver um sistema normativo de apoio à decisão. A problemática da explicação em sistemas bayesianos, relativamente nova quando comparada com a dos sistemas baseados em regras, é abordada. Neste contexto dois mecanismos de explicação para diagramas de influência são propostos: análise de sensibilidade e as redes probabilísticas qualitativas. Estes mecanismos são usados para gerar conclusões genéricas bem como para entender qualitativamente as relações entre as ações e eventos que fazem parte do modelo. Uma ferramenta gráfica de apoio à decisão baseada em diagramas de influências foi implementada na linguagem Smalltalk. Este aplicativo não só permite representar e avaliar o problema do usuário como também incorpora as facilidades de explicação acima descritas. A possibilidade de observar graficamente o que acontece com o modelo quando os valores das variáveis são modificados - análise de sensibilidade - permite compreender melhor o problema descobrindo quais as variáveis que influenciam as decisões e auxilia a refinar os valores das variáveis envolvidas. Por outro lado às redes probabilísticas qualitativas permitem realizar abstrações e simplificações apropriadas do modelo, i.e., obter as relações qualitativas do modelo a partir de seu nível quantitativo. As conclusões genéricas obtidas servem tanto para limitar o espaço da estratégia ótima quanto para entender qualitativamente as relações entre as ações e eventos que fazem parte do modelo. |