Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Maletzke, André Gustavo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04062009-201445/
|
Resumo: |
Mineração de dados tem sido cada vez mais aplicada em distintas áreas com o objetivo de extrair conhecimento interessante e relevante de grandes conjuntos de dados. Nesse contexto, aprendizado de máquina fornece alguns dos principais métodos utilizados em mineração de dados. Dentre os métodos empregados em aprendizado de máquina destacam-se os simbólicos que possuem como principal contribuição a interpretabilidade. Entretanto, os métodos de aprendizado de máquina tradicionais, como árvores e regras de decisão, não consideram a informação temporal presente nesses dados. Este trabalho propõe uma metodologia para extração de conhecimento de séries temporais por meio da extração de características e da identificação de motifs. Características e motifs são utilizados como atributos para a extração de conhecimento por métodos de aprendizado de máquina. Essa metodologia foi avaliada utilizando conjuntos de dados conhecidos na área. Foi realizada uma análise comparativa entre a metodologia e a aplicação direta de métodos de aprendizado de máquina sobre as séries temporais. Os resultados mostram que existe diferença estatística significativa para a maioria dos conjuntos de dados avaliados. Finalmente, foi realizado um estudo de caso preliminar referente ao monitoramento ambiental do reservatório da Usina Hidrelétrica Itaipu Binacional. Nesse estudo somente a identificação de motifs foi aplicada. Foram utilizadas séries temporais referentes à temperatura da água coletadas em distintas regiões do reservatório. Nesse estudo observou-se a existência de um padrão na distribuição dos motifs identificados para cada região do reservatório, corroborando com resultados consagrados na literatura |